
BOB Onramp Security Review
Pashov Audit Group

Conducted by: 0xunforgiven, carrotsmuggler, SpicyMeatball
April 19th 2024 - April 22th 2024

Contents
1. About Pashov Audit Group
2. Disclaimer
3. Introduction
4. About BOB Onramp
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Findings

8.1. Medium Findings
[M-01] getTxOutputValue() doesn't sum up all the values
[M-02] BTC transactions can have multiple inputs and
outputs
[M-03] Race condition for bridged BTC
[M-04] Malicious recipient can gas grief the relayer
[M-05] Multiple onramps can have the same
scriptPubKeyHash

8.2. Low Findings
[L-01] Tokens with decimals <8 not supported
[L-02] Bitcoin transactions can have large outputVector
[L-03] validateProof uses encodePacked
[L-04] LP params changed while users are waiting
[L-05] Replaying the same BTC transactions on different
LPs

1

2

2

2

3

3

3
4
4

4

5

7

7

7

7

8

9

10

12

12

12

13

13

14

1. About Pashov Audit Group
Pashov Audit Group consists of multiple teams of some of the best smart contract
security researchers in the space. Having a combined reported security
vulnerabilities count of over 1000, the group strives to create the absolute very best
audit journey possible - although 100% security can never be guaranteed, we do
guarantee the best efforts of our experienced researchers for your blockchain
protocol. Check our previous work here or reach out on Twitter @pashovkrum.

2. Disclaimer
A smart contract security review can never verify the complete absence of
vulnerabilities. This is a time, resource and expertise bound effort where we try to
find as many vulnerabilities as possible. We can not guarantee 100% security after
the review or even if the review will find any problems with your smart contracts.
Subsequent security reviews, bug bounty programs and on-chain monitoring are
strongly recommended.

3. Introduction
A time-boxed security review of the bob-collective/bob-onramp repository was
done by Pashov Audit Group, with a focus on the security aspects of the
application's smart contracts implementation.

2

https://github.com/pashov/audits
https://twitter.com/pashovkrum

4. About BOB Onramp
BOB is a hybrid Layer-2 powered by Bitcoin and Ethereum. The design is such that
Bitcoin users can easily onboard to the BOB L2 without previously holding any
Ethereum assets. The user coordinates with the trusted relayer to reserve some of
the available liquidity, sends BTC on the Bitcoin mainnet and then the relayer can
provide a merkle proof to execute a swap on BOB for an ERC20 token. The
liquidity provider (LP) first locks that token in Onramp.sol as well as some small
amount of ETH to allow that user to do some swaps on BOB. The LP receives
Bitcoin to their specified address and can re-balance by converting that to the
wrapped token and re-depositing.

5. Risk Classification

Severity Impact: High Impact: Medium Impact: Low

Likelihood: High Critical High Medium

Likelihood: Medium High Medium Low

Likelihood: Low Medium Low Low

5.1. Impact

High - leads to a significant material loss of assets in the protocol or significantly
harms a group of users.
Medium - only a small amount of funds can be lost (such as leakage of value) or a
core functionality of the protocol is affected.
Low - can lead to any kind of unexpected behavior with some of the protocol's
functionalities that's not so critical.

3

5.2. Likelihood

High - attack path is possible with reasonable assumptions that mimic on-chain
conditions, and the cost of the attack is relatively low compared to the amount of
funds that can be stolen or lost.
Medium - only a conditionally incentivized attack vector, but still relatively
likely.
Low - has too many or too unlikely assumptions or requires a significant stake by
the attacker with little or no incentive.

5.3. Action required for severity levels

Critical - Must fix as soon as possible (if already deployed)
High - Must fix (before deployment if not already deployed)
Medium - Should fix
Low - Could fix

6. Security Assessment Summary
review commit hashes - 9bf1966f9469d2b13d426402da8adb6059a30096

fixes review commit hashes - 403389e4fae9d4a0dd59fa9e419cb50442cd33f3

Scope

The following smart contracts were in scope of the audit:

OnrampFactory

Onramp

4

https://github.com/bob-collective/bob-onramp/tree/9bf1966f9469d2b13d426402da8adb6059a30096
https://github.com/bob-collective/bob-onramp/tree/403389e4fae9d4a0dd59fa9e419cb50442cd33f3

7. Executive Summary
Over the course of the security review, 0xunforgiven, carrotsmuggler,
SpicyMeatball engaged with BOB to review BOB Onramp. In this period of time a
total of 10 issues were uncovered.

Protocol Summary
Protocol Name BOB Onramp

Repository https://github.com/bob-collective/bob-onramp

Date April 19th 2024 - April 22th 2024

Protocol Type Hybrid Layer 2

Findings Count
Severity Amount

Medium 5

Low 5

Total Findings 10

5

Summary of Findings
ID Title Severity Status

[M-01] getTxOutputValue() doesn't sum up
all the values Medium Resolved

[M-02] BTC transactions can have multiple
inputs and outputs Medium Resolved

[M-03] Race condition for bridged BTC Medium Acknowledged

[M-04] Malicious recipient can gas grief the
relayer Medium Acknowledged

[M-05] Multiple onramps can have the same
scriptPubKeyHash Medium Acknowledged

[L-01] Tokens with decimals <8 not
supported Low Resolved

[L-02] Bitcoin transactions can have large
outputVector Low Acknowledged

[L-03] validateProof uses encodePacked Low Acknowledged

[L-04] LP params changed while users are
waiting Low Acknowledged

[L-05] Replaying the same BTC transactions
on different LPs Low Acknowledged

6

8. Findings

8.1. Medium Findings

[M-01] getTxOutputValue() doesn't sum up
all the values

Severity
Impact: High, user bridged funds will be lost.

Likelihood: Low, a user should repeat target address multiple times in
outputVector

Description
To calculate the bridged amount code calls getTxOutputValue() to find the
transferred amount to the onramp address. That function only took the first
value of the target address in outputVector list. The issue is that the same
address may repeat multiple times in the outputVector and the code should
sum all of them to calculate the total amount transferred to the target address.

Recommendations
Sum all the values for scriptPubKeyHash in outputVector list.

[M-02] BTC transactions can have multiple
inputs and outputs

Severity
Impact: Medium

Likelihood: Medium

7

Description
BTC txs can have multiple inputs and outputs and the relayer chooses the
reciever and onramp contract based on the BTC transaction after users make
the BTC transactions. The issue is that it's not clear which input address would
be chosen as a token receiver and which output address is going to be chosen
as an onramp contract. Funds may go to a different receiver address or the
relayer may use the wrong onramp contract. If the relayer handles only specific
BTC txs users should be informed about relayer limitations.

Recommendations
Ensure the relayer uses the correct recipient address.

[M-03] Race condition for bridged BTC

Severity
Impact: High, users would lose bridged BTC.

Likelihood: Low, requires special conditions.

Description
To bridge BTC users need to transfer their funds to the onramp address
(scriptPubKeyHash) and then the relayer would call proveBtcTransfer() and
the target onramp would transfer the bridged token to the user. The issue is that
multiple users may have transferred their BTC to that address at the same time
and the onramp may not have enough tokens to handle all those orders so some
of the users would lose their funds.

Recommendations
Add queue mechanism for off-chain relayer and handle users one by one. Or
don't ask users to transfer BTC directly to the onramp contract's
scriptPubKeyHash . gather BTC in the relayer BTC address and when the
bridge was successful in the BOB then transfer onramp's BTC.

8

[M-04] Malicious recipient can gas grief the
relayer

Severity
Impact: High

Likelihood: Low

Description
When a user sends BTC on the Bitcoin mainnet, the relayer attempts to
execute the swap on BoB network with onramp contract

function proveBtcTransfer(
 BitcoinTx.Info memory _txInfo,
 BitcoinTx.Proof memory _txProof,
 address payable _recipient,
 Onramp _onramp
) external onlyOwner {
 require(getOnramp[address(_onramp)], "Onramp does not exist");

 bytes32 txHash = relay.validateProof
 (txProofDifficultyFactor, _txInfo, _txProof);

 uint256 outputValueSat = BitcoinTx.getTxOutputValue
 (_onramp.scriptPubKeyHash(), _txInfo.outputVector);

 _onramp.executeSwap(txHash, outputValueSat, _recipient);
 }

The on-ramp contract transfers 1:1 amounts of wrapped BTC and some extra
ETH tokens as gratuity.

function executeSwap(
 bytes32_txHash,
 uint256_outputValueSat,
 addresspayable_recipient
) external onlyFactory {
 ---SNIP---

 uint256 amount = calculateAmount(_outputValueSat - feeSat);

 emit ExecuteSwap(_recipient, _outputValueSat, feeSat, amount, gratuity);

 // transfer token
 token.safeTransfer(_recipient, amount);

 // slither-disable-next-line arbitrary-send-eth,low-level-calls
>> (bool sent,) = _recipient.call{value: gratuity}("");
 require(sent, "Could not transfer ETH");
 }

9

A malicious recipient contract can take advantage of this, by implementing a
receive function in which it spends all the transaction gas, reverting the
function to grief the relayer. As there is no minimum limit on the BTC amount,
except for the dustThreshold which can be relatively small, this attack can be
repeatedly executed with small amounts of tokens, wasting the relayer's gas. In
the worst-case scenario, this could lead to a Denial of Service (DoS) of the
protocol.

Recommendations
Create a pull mechanism, instead of sending ETH, let recipients claim it.

[M-05] Multiple onramps can have the same
scriptPubKeyHash

Severity
Impact: High

Likelihood: Low

Description
Each onramp contract has scriptPubKeyHash address which users deposit to
those addresses to bridge their BTC, the issue is that the code doesn't check to
make sure different onramp contracts have the different scriptPubKeyHash
address. This would create issues and have multiple impacts based on the off-
chain relay implementation:

1. Users can deposit and receive tokens multiple times from onramp contracts
that have the same scriptPubKeyHash .

2. LP provider can set duplicate scriptPubKeyHash for his onramp contracts
and front-run other users BTC transfers self-bridge his tokens and receive his
funds in onramp and cause loss for users.

3. LP provider can set duplicate scriptPubKeyHash for different onramp
contracts and cause users to lose funds because of different fees in those
onramps.

Recommendations
10

Contract shouldn't allow different onramp contracts to have the same
scriptPubKeyHash address.

11

8.2. Low Findings

[L-01] Tokens with decimals <8 not
supported

Creating an on-ramp contract for tokens with fewer than 8 decimal places is
impossible due to underflow in the constructor.

constructor(
 address _owner,
 ERC20 _token,
 bytes32 _scriptPubKeyHash,
 uint64 _feeDivisor,
 // should be a very small amount
 uint64 _gratuity
) Ownable() {
 transferOwnership(_owner);
 factory = msg.sender;
 token = _token;
>> multiplier = 10 ** (token.decimals() - 8);

It may not be a problem for wBTC and tBTC tokens, but it could be an issue if
a bridged BTC token with fewer than 8 decimals is created in the future.
Consider refactoring calculateAmount function:

function calculateAmount
 (uint256 _outputValueSat) public view virtual returns (uint256) {
+ uint8 decimals = token.decimals();
+ uint256 amountSubFee = decimals >= 8 ? _outputValueSat * 10 **
+ (decimals - 8) : _outputValueSat / 10 ** (8 - decimals);
- uint256 amountSubFee = _outputValueSat * multiplier;
 return amountSubFee;
 }

[L-02] Bitcoin transactions can have large
outputVector

When a user wants to bridge their tokens, the relayer calls
proveBtcTransfer() to finalize the transfer. The issue is that the code calls
getTxOutputValue() to find the bridged amount and that function loops
through all the outputVector of the bitcoin tx. The size of getTxOutputValue

12

can be up to 400K and 3000 output so this may cause OOG for
proveBtcTransfer() calls and users' bridged transactions can't be finalised.

[L-03] validateProof uses encodePacked
The function validateProof calculates the transaction hash.

txHash =
 abi.encodePacked(
 txInfo.version,
 txInfo.inputVector,
 txInfo.outputVector,
 txInfo.locktime
).hash256View(

The issue is that txInfo.inputVector and txInfo.outputVector are both
variable-length bytes objects. This is unsafe when used with encodePacked .
This is because encodePacked does not take into consideration the individual
lengths and just puts them together, and thus can lead to hash collisions with
different inputs.

As an example, the hash of encodePacked([a,b],[c]) is identical to the hash
of encodePacked([a],[b,c]) . This also extends to bytes objects, which are
also variable length.

This isn't exploitable in the current codebase but is still inadvisable. Consider
using abi.encode() instead.

More info can be found here: https://swcregistry.io/docs/SWC-133/

[L-04] LP params changed while users are
waiting

Block confirmations on the Bitcoin network can take up to 10 minutes. For
multiple confirmations, users can wait for 20-30 minutes before the relayer
initiates the transaction to mint tokens on BOB.

The issue is that there is no deadline parameter that users can pass in. So
users can be made to wait a long time, and the state of the LP can change in
this waiting time period.

13

Liquidity providers can change their parameters after calling startUpdate and
waiting 6 hours. Within this time period, users are still able to utilize that pool
for carrying out swaps. However, when this waiting period is about to end,
there can be users waiting for block confirmations on the Bitcoin network who
have already initiated their transactions. The pool owners can then change the
parameters and update their fees, and the transaction would then take place and
cost the user more fees than they imagined.

The main issue is that bridging off of bitcoin can take a long time, and has a
variance of 10 minutes depending on when the last block was produced. On
EVM-based chains with MEV, a lot can happen in these 10 minutes, especially
if this time window coincides with the unlock time of a pool configuration.

Pools can force users to pay extreme fees (up to 50%), which they did not sign
up for when they initiated the transaction.

Consider either adding a slippage param, which will force a certain amount
of tokens out, or a deadline param which will prevent their swap from going
through if it is too late.

[L-05] Replaying the same BTC
transactions on different LPs

When a BTC bridging event is started, the relayer picks up the relevant
transaction info and proof and submits it on the EVM chain (BOB) to mint out
the respective tokens from an onramp. The system is designed to have multiple
onramps, so the user can choose any ramp they wish.

The issue is that once the BTC transaction is used to do a mint, it must be
negated, so it can never be used again. This is a very core design of every
bridge and should be followed.

The issue here is that this transaction negation in the current design happens at
the individual ramp level.

// Onramp.sol
spent[_txHash] = true;

The different ramps don't share this state. So even if a transaction is negated on
Ramp A, it can be triggered again with Ramp B, since on that ramp the BTC
deposit transaction has not been negated yet.

14

Thus, the relayer has the ability to use a single proof to mint out assets from
every ramp. Even though the relayer is controlled by a trusted party, it should
not have the power to re-mint using already used-up transactions.

The contracts in the current state essentially let the relayer double-spend the
same BTC tokens on every ramp.

The transaction hash negation should be moved to the central OnrampFactory
contract. This way the same txHash cannot be spent on two different ramps.

15

